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[1] Growing recognition of the importance of natural and anthropogenic aerosols in
climate research led to numerous efforts to obtain information on aerosols based on model
simulations, satellite remote sensing, and ground observations. This study describes an
approach to combine information from independent sources that complement each other in
their capabilities to achieve a global characterization of monthly mean clear-sky daytime
aerosol optical depth. The following sources of information have been used:
simulations from the Global Ozone Chemistry Aerosol Radiation and Transport
(GOCART) model; retrievals from the Moderate Resolution Imaging Spectroradiometer
(MODIS) instrument on the Terra satellite; and measurements from the Aerosol Robotic
Network (AERONET). Leading empirical orthogonal functions (EOFs) are used to
represent the significant variation signals from model and satellite results; the EOFs are
fitted to the ground observations to propagate the AERONET information at a global
scale. The methodology is implemented with a 2-year time record when collocated data
from all three sources are available.

Citation: Liu, H., R. T. Pinker, and B. N. Holben (2005), A global view of aerosols from merged transport models, satellite, and
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1. Introduction

[2] Natural as well as anthropogenic aerosols affect the
global radiation balance directly and indirectly. The direct
effects are due to scattering and absorption of radiation with a
subsequent influence on the planetary albedo and surface
radiative fluxes [Coakley et al., 1983; Charlson et al., 1992;
Kiehl and Briegleb, 1993; Boucher and Anderson, 1995;
Schwartz, 1996]. Examples of indirect effects are: possible
changes of the number and size of cloud droplets [Twomey,
1977; Twomey et al., 1984;Coakley et al., 1987] or effects on
precipitation efficiency [Albrecht, 1989]. Reduction in cloud
cover caused by solar absorption in haze layers has been
considered as a semidirect effect [Hansen et al., 1997;
Ackerman et al., 2000]. Aerosols are a major source of
uncertainty in estimating radiation budgets, and predicting
climate change [Intergovernmental Panel on Climate
Change (IPCC), 2002]. Better knowledge of the spatial and
temporal variations of aerosol properties is needed, especially
of aerosol optical depth (AOD) at standard wavelength
(550 nm), which is the most important parameter to
characterize extinction of the incoming solar radiation.
[3] Numerous approaches have been developed to study

large-scale atmospheric aerosols based on remote sensing
and model simulations. Major sensors used for AOD
retrievals include the advanced very high resolution radi-

ometer (AVHRR) [Rao et al., 1989; Stowe et al., 1997;
Husar et al., 1997; Higurashi and Nakajima, 1999;
Mishchenko et al., 1999]; the Total Ozone Mapping
Spectrometer (TOMS) [Herman et al., 1997; Torres et
al., 1998, 2002]; Polarization and Directionality of the
Earth’s Reflectance (POLDER) [Goloub et al., 1999;
Deuzé et al., 2001]; Moderate resolution Imaging Spec-
troradiometer (MODIS) [Kaufman et al., 1997; Tanré et
al., 1997]; and Multiangle Imaging Spectroradiometer
(MISR) [Martonchik et al., 1998]. Detailed descriptions
of spaceborne remote sensing of aerosol properties are
presented in the work of King et al. [1999]. Model
simulations of the wide spectrum of aerosol types are
provided by chemical transport models (CTMs) that are
off-line modules driven by meteorological data or from
global circulation models (GCMs) which take aerosol
processes as an integrated part within the simulation
scheme. Description, intercomparison of models and eval-
uation against satellite retrievals and ground observations
are presented in the work of Penner et al. [2002] andKinne et
al. [2001, 2003]. Very few historical groundmeasurements of
aerosol properties are available due to limitations of instru-
ment maintenance and calibration, and degradation of the
filters used. Recently, a centrally maintained ground-based
Aerosol Robotic Network (AERONET) has been in operation
for more than 10 years to provide accurate point measure-
ments at more than 100 stations [Holben et al., 1998, 2001].
[4] Each of the above approaches has advantages as well

as deficiencies. Ground observations give accurate point
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information, yet, are limited in spatial coverage. Satellites
have improved geographical coverage, but the accuracy of
the retrieved values is affected by surface conditions, cloud
contamination, and uncertainties about aerosol microphys-
ical and chemical properties. Models capture the mecha-
nisms of aerosol production, transformation, transport and
deposition and provide a comprehensive description of
aerosol properties, but the complex processes are simulated
with highly parameterized schemes which need continuous
evaluation. Integrated analysis is required to combine the
useful aspects of the individual data sources to give a
complete description [Charlson, 2001; Diner et al., 2004].
[5] Optimal assimilation of AOD on a global scale from

multiple data sources requires reliable error information.
Obtaining accurate estimates of error variance and covari-
ance structure remains a challenge given the limited
‘‘ground truth.’’ In this work, an empirical method is
presented for obtaining representative monthly grid area
averaged clear-sky daytime AOD by combining the advan-
tages of each data set. Temporally collocated monthly mean
AOD at 0.55 mm from satellite retrievals, model simulations
and ground measurements are used. As a major sensor
designed to provide high quality, routine retrievals both
over ocean and land, MODIS data are selected; GOCART
model which produces reasonable spatial structures [Chin et
al., 2000] is utilized; the best available ground measure-
ments are taken from the AERONET. Analysis was per-
formed for a 2-year period (March 2000 to February 2002)
and spatial domain between 60�S and 60�N where most
MODIS retrievals and AERONET stations exist. To obtain a
global field, extrapolation to high latitudes has been per-
formed based on the spatial distribution of the GOCART
model results.
[6] Data sources used are described in section 2; a quality

check of MODIS and AERONET data is presented in
section 3; comparison of spatial and temporal variability
between GOCART and MODIS data is given in section 4; in
section 5 the empirical combination method is introduced
and implemented; discussion and summary are presented in
section 6.

2. Data Sources

2.1. GOCART Model Simulations

[7] The Global Ozone Chemistry Aerosol Radiation and
Transport (GOCART) model is a three-dimensional chemical
transport model with a horizontal resolution of 2.5� longitude
by 2� latitude and 20–30 vertical layers, depending on the
backgroundmeteorology used (the Goddard Earth Observing
System Data Assimilation System) [Chin et al., 2000, 2002;
Ginoux et al., 2001].As a forwardmodel that provides needed
AOD information, GOCART estimates the emissions of the
key types of aerosols (sulfate, dust, organic carbon, black
carbon and sea salt) and their precursors based on state-of-the-
art data sets of fossil/biofuel combustion; biomass burning
and surface topographic features. Chemical reactions (e. g.,
DMS and SO2 oxidation), transport mechanisms (advection,
diffusion and convection), aging and removing processes are
built into the model to simulate the aerosol evolvement. To
deriveAOD, dry aerosolmassMd for each aerosol component
is calculated, aerosol optical parameters and hygroscopic
effect are assumed to estimate the mass extinction efficiency

b, which describes a linear relationship between the dry
aerosol mass and the AOD at specified wavelength. Most of
these processes are highly parameterized and could be
sources of error. Evaluation of the GOCART AOD
against satellite retrievals and AERONET observations
revealed that the model has the capability to reproduce
prominent spatial and temporal variations, in particular in
areas with strong signals (biomass burning and dust
dominant) [Chin et al., 2002].

2.2. MODIS Satellite Retrievals

[8] The Moderate resolution Imaging Spectroradiometer
(MODIS) onboard the EOS Terra and Aqua polar orbiting
satellites is a well-designed instrument for AOD retrievals
[Salomonson et al., 1989; King et al., 1999]. With 36 well-
calibrated bands of wide spectral range of radiance observa-
tions it is possible to implement improved cloud screening
algorithms, obtain better determination of surface reflectance,
and therefore, a better estimate of AOD from the clear sky
path radiances. Owing to availability of observations at high
spatial resolution and nearly daily global coverage, MODIS
presents an unprecedented opportunity to monitor global
aerosol characteristics.
[9] Retrievals of AOD using multispectral signals from

MODIS are performed separately over ocean and land
[Kaufman et al., 1997; Tanré et al., 1997]. Over land,
a multispectral cloud mask is used for cloud screening
[Ackerman et al., 1998]. The dark target technique is used
to determine the surface reflectance at blue and red channels
(0.47 and 0.66 mm). Major sources of error in the retrievals
over land are subpixel cloud contamination, inappropriate
aerosol models and inaccurate surface reflectance estimation
over areas with subpixel surface water, snow or ice cover.
Evaluation of three months of level 2 (10 km � 10 km) land
AOD product with AERONET data shows that retrievals
are within the expected error range (±0.05 ± 0.2t) for the
470 and 660 nm wavelengths [Chu et al., 2002]. Over
oceans, cloud screening is based on the spatial variability of
visible reflectance in combination with tests using infrared
channels [Martins et al., 2002]. Five fine mode and six
coarse mode aerosol models are built in the lookup table;
selection and relative contribution of each mode is based on
a least square best fit to the multispectral path radiances.
Validation of about six months level 2 ocean AOD product
with AERONET observations shows that retrievals are well
within the expected error uncertainties (±0.03 ± 0.05t), with
standard error being about 0.02 for wavelengths 0.66 and
0.87 mm [Remer et al., 2002].

2.3. AERONET Observations

[10] The AERONET is a globally distributed federated
network of ground-based observations representing a wide
range of atmospheric conditions [Holben et al., 1998,
2001]. AERONET uses the weather-resistant automatic
CIMEL Sun/Sky radiometer to make frequent measure-
ments of atmospheric aerosol optical properties at remote
sites. Assessment of possible errors due to calibration
uncertainties, inaccuracy in ozone absorption, and Rayleigh
scattering calculations shows that the total uncertainty in
AOD is about 0.01 to 0.02 [Holben et al., 1998; Eck et
al., 1999]. Therefore AERONET data are regarded as a
quality ‘‘benchmark’’ and are extensively used for the
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evaluation of other AOD products and calculation of
radiative effects.

3. Quality Check and Data Preparation

3.1. MODIS Data

[11] Level 3 version 4 1� � 1� monthly mean AOD data
as derived from MODIS observations on Terra as are used
in this study. MODIS retrievals are restricted by surface
conditions and cloud presence and therefore, daily count of
‘‘pixels’’ (spatial resolution of 10 km by 10 km) within each
grid cell varies from several to near two thousand. Most
grids with limited retrievals are found in arid areas (bright
surfaces), high latitudes (snow/ice cover) and the ‘‘roaring
forties’’ of the Southern Hemisphere Ocean (glint effects).
Temporal and spatial averages formed from these low
numbers of retrievals could cause a large sampling error.
Yet, filtering of MODIS data, based solely on a minimum
daily count at pixel level, could be problematic because a
less conservative threshold would likely include suspicious
data, while a too conservative limit may suffer from losing
too much valuable information.
[12] An obvious feature of the unfiltered MODIS data is

the existence of some local discontinuities. For the spatially
and temporally averaged AOD, large variation among
adjacent grid points might be unrealistic and could be the
result of under-sampling. To check if indeed this is the case,
a discontinuity index is defined for each grid point as
follows: local average and standard deviation are deter-
mined from a 3 by 3 array of points centered on the target
grid; absolute difference between the target grid value and
the local mean is calculated; and the discontinuity index is
set to be the absolute value of this difference minus the local
standard deviation. Accordingly, a large index value indi-
cates large variations around the central point, and therefore,
high discontinuity. Next, MODIS grid data are grouped
based on the discontinuity index at a 0.1 bin size, and
average pixel daily count is calculated for each bin. Result
of this analysis is shown in Figure 1. It can be seen that higher
index is related to small number of pixel counts, namely, large
discontinuity is associated with under-sampling. Also seen
from Figure 1 is that more than 97% of the grids have an
index lower than 0.2, which implies that the discontinuity
index could also be used to improve the quality of
MODIS monthly mean AOD with minimum loss of data.
Availability of overlapping MODIS retrievals from Terra
and Aqua provides an opportunity to test this idea. Since
the local overpass time of Terra and Aqua (about 10:30 am
and 1:30 pm) are close to each other, themonthlymean values
from these two satellites should be consistent. If a large
discrepancy exists, it can be attributed to sampling errors
[Kaufman et al., 2000]. Seventeen months (July 2002 to
November 2003) of level 3 monthly mean AOD data are
taken fromboth platforms and a linear correlation between the
two data sets is calculated at different combinations of two
thresholds (minimum pixel daily count and maximum dis-
continuity index) (Table 1). If all data are used, correlation is
only 0.79. The correlation is improved as the lower limit of
pixel count increases and upper limit of discontinuity index
decreases. It is evident that a combination of these two criteria
could result in higher correlation with elimination of a small
amount of data. When the minimum pixel count is chosen to

be 10 and the maximum discontinuity index as 0.2, the
correlation increases to 0.91; less than 5% data are being
filtered out. After implementing these criteria to the 2-year
Terra MODIS monthly mean AOD used in this study, more
than 96.7% of the data remained.
[13] For compatibility with GOCART model output

(2.5� � 2�), the 1� � 1� MODIS data are degraded to
the same resolution, based on an area-weighted averages.
In this remapped data set, data void grids are present in
bright surface areas and high latitude. To make the data
set complete, interpolation/extrapolation of the AOD
values from neighboring grids is performed based on
the Poisson technique [Oort andRasmusson, 1971;Reynolds,
1988]. The Poisson equation

r2f ¼ r ð1Þ

describes an equilibrium solution of a field (f) which is
balanced by the external forcing (r) and the diffusion process.
Using Poisson’s equation, spatial distribution information
(locations of the local minima and maxima and the rate of
change of AOD field) could be prescribed in terms of forcing
r. The forcing terms for the data void grids are calculated from
GOCART model results and MODIS data are taken as
boundary values. In order to fill in high latitudes, GOCART
data serve as external boundaries with the assumption that
lowAOD values fromGOCARTat polar region represent the
relatively clean atmospheric conditions. Finite differences in
the spherical coordinates and successive over-relaxing (SOR)
method [Press et al., 1995] are implemented to solve this
second-order differential equation iteratively. Data within the
region of interest (60�S, 60�N) are further analyzed. The
rationale behind this filling process is to keep the magnitudes
of AOD from MODIS and to utilize the spatial distribution
information from GOCART. As an example of the effect of
quality check and void-filling, one month (August 2000)
of data from GOCART simulation results, 1� � 1�

Figure 1. The average daily pixel count as a function of
the discontinuity index for MODIS 1� � 1� monthly mean
AOD data. Percentage of grid points falling into each bin is
labeled on the top of each column.
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MODIS level 3 data, and error-filtered, void-filled,
remapped global 2.5� � 2� MODIS monthly mean
AOD are shown in Figure 2.

3.2. AERONET Data

[14] Quality assured level 2.0 data from AERONET are
used to compute the monthly mean AOD values for each
individual site (Figure 3). Optical depths at two adjacent
wavelengths (0.5 and 0.67 mm) are used to interpolate to the
standard wavelength (0.55 mm) based on the Ångström
empirical expression given as:

t ¼ bl�a ð2Þ

where l is the corresponding wavelength in microns for the
AOD t, b is the Angstrom’s turbidity coefficient, and a is
the wavelength exponent. Monthly averages are calculated
on the basis of daily mean values. Although AERONET
provides accurate point measurements, regional representa-
tion of monthly means can be questionable [Chin et al.,
2002; Kinne et al., 2003]. Table 2 lists the monthly mean
AOD of multiple AERONET stations collocated within the
same 2.5� � 2� grid cell. Most of the collocated sites have
AOD that are close to each other. Variations larger than 0.1
exist in grids in proximity to source regions of biomass
burning (August–September in Ndola and Solwize) and
dust outbreaks (April in Beijing and XianHe). Possible
reasons are the episodic nature of dust outbreaks and
biomass burning, short lifetime of large particles and the
directionality of the transport. Local pollution could also
lead to large subgrid variation as observed at Penn_
State_Univ, GSFC and MD_Science_Center on July
2001. Since most of the time aerosol properties and
concentrations are consistent over larger scale, AERONET
monthly mean AOD is a good estimate of grid mean value,

Table 1. Correlation Between the 1� � 1� MODIS Monthly Mean AOD From Terra and Aqua (July 2002 to November 2003) at

Different Combinations of Minimum Pixel Daily Count and Maximum Discontinuity Indexa

Maximum
Discontinuity
Index 0.1

Maximum
Discontinuity
Index 0.2

Maximum
Discontinuity
Index 0.3

Maximum
Discontinuity
Index 0.4

Maximum
Discontinuity
Index 0.5

Maximum
Discontinuity
Index 0.8

Maximum
Discontinuity
Index 1.0

Maximum
Discontinuity
Index 1

Minimum Pixel Daily Count of 0
0.9194 0.8974 0.8729 0.8573 0.8462 0.8220 0.8138 0.7912
94.70% 98.29% 99.21% 99.57% 99.74% 99.90% 99.93% 100%

Minimum Pixel Daily Count of 10
0.9317 0.9120 0.8945 0.8818 0.8725 0.8578 0.8534 0.8499
92.21% 95.29% 96.03% 96.31% 96.44% 96.54% 96.56% 96.59%

Minimum Pixel Daily Count of 20
0.9347 0.9165 0.9003 0.8882 0.8798 0.8686 0.8653 0.8499
90.77% 93.64% 94.32% 94.57% 94.68% 94.76% 94.77% 94.79%

Minimum Pixel Daily Count of 30
0.9372 0.9205 0.9048 0.8939 0.8863 0.8773 0.8748 0.8737
89.45% 92.15% 92.79% 93.02% 93.11% 93.18% 93.19% 93.20%

Minimum Pixel Daily Count of 50
0.9412 0.9262 0.9127 0.9034 0.8975 0.8918 0.8905 0.8902
86.74% 89.17% 89.74% 89.92% 90.00% 90.04% 90.05% 90.05%

Minimum Pixel Daily Count of 100
0.9489 0.9377 0.9279 0.9215 0.9190 0.9172 0.9172 0.9172
79.55% 81.46% 81.86% 81.97% 82.00% 82.01% 82.02% 82.02%
aAlso shown is percentage of grids that satisfy the requirement.

Figure 2. Monthly mean AOD at 550 nm for August
2000. (a) GOCART simulation results, (b) MODIS level 3
1� � 1� monthly means, and (c) error-filtered, void-filled,
remapped 2.5� � 2� MODIS data. See color version of this
figure at back of this issue.
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and can be used for evaluation of grid averaged products
[Chin et al., 2000; Yu et al., 2003; Kinne et al., 2003]. A full
year comparison among collocated AERONET, GOCART
and MODIS data is presented in Figure 4. To achieve a better
representation of spatial and temporal variations, AERONET
stations are grouped into six regions, and sorted by direction
as specified in Table 3. Generally, in terms of magnitude,
AERONET data are comparable to the other two grid
averaged data sets. MODIS retrievals appear to be the highest
among the three, in particular in the western North America
during the spring/summer time and in dust dominated regions
(region D). This can be partially attributable to inaccurate
estimation of surface reflectance [Chin et al., 2004] and
insufficient knowledge of the optical properties of nonsphe-
rical particles [Levy et al., 2003].
[15] AERONET monthly mean AOD values are also af-

fected by under-sampling. Stations are marked as question-
able if within onemonth, the number of total measurements is
less than 100 and days in operation are less than five. During

March 2000 to February 2001, three measurements are
eliminated because they show much higher values than
MODIS and GOCART data (Figure 3) (Dakar on August
2000; NCU Taiwan on October 2000; Mexico City on
November 2000). Similar comparison was performed for
2001 and two unrealistic AERONET monthly mean values
were filtered out (Yulin inApril 2001 and Philadelphia in June
2001). Data from Mauna Loa, Hawaii are not used in the
analysis since the site is located 3.4 km above sea level, void
of aerosol effects and used for calibration of Sun photometers
[Holben et al., 1998].

3.3. Temporal Sampling Differences

[16] The data sets used in this study have some intrinsic
differences in their temporal coverage. GOCART model
simulates the whole aerosol life cycle, and the monthly
mean is an all-sky all-time average; MODIS onboard Terra
provides AOD at the daily local overpass time under cloud-
free condition, and the monthly mean represents the clear-

Figure 3. Location of AERONET stations used in this study and domains for regional comparison.

Table 2a. Monthly Mean AOD of AERONET Sites Located Within the Same 2.5� � 2� Grid Cella

March
2000

April
2000

May
2000

June
2000

July
2000

August
2000

September
2000

October
2000

November
2000

December
2000

January
2001

February
2001

GSFC 0.111 0.142 0.294 0.326 0.299 0.338 0.152 0.130 0.075 0.071 0.076 0.113
MD_Science_Center 0.119 0.156 0.309 0.334 0.291 0.380 0.150 0.150 0.079 0.071 0.087 0.106
Oyster 0.104 0.113 0.278 NAb NA NA NA NA NA NA NA NA
Wallops 0.102 0.169 0.255 NA NA NA NA NA NA NA NA NA
Rogers_Dry_Lake 0.073 0.096 0.100 NA 0.087 NA NA NA NA NA NA NA
UCLA 0.140 0.165 0.158 NA NA NA NA NA NA NA NA NA
MISR-JPL NA NA NA NA 0.174 NA NA NA NA NA NA NA
Creteil NA NA NA NA 0.158 0.194 NA 0.104 NA NA NA NA
Palaiseau NA NA NA NA 0.153 0.185 NA 0.087 NA NA NA NA
Paris NA NA NA NA 0.152 0.107 NA NA NA NA NA NA
Mongu NA NA NA NA NA 0.258 0.717 0.476 NA NA NA NA
Senanga NA NA NA NA NA 0.223 0.692 0.513 NA NA NA NA
Ndola NA NA NA NA NA 0.370 0.650 NA NA NA NA NA
Solwezi NA NA NA NA NA 0.520 0.834 NA NA NA NA NA

aFrom March 2000 to February 2001. Cells with subgrid variation larger than 0.1 are shown in boldface.
bNA, temporal collocated measurements are not available.

D10S15 LIU ET AL.: A GLOBAL VIEW OF AEROSOLS

5 of 16

D10S15



sky prenoontime value; AERONET measurements are per-
formed for all clear-sky daytime situations, and therefore,
the temporal coverage is intermediate between GOCART
and MODIS. Relative to the clear-sky daytime average,
inclusion of aerosols under cloudy condition in GOCART
might introduce a bias which is difficult to estimate because
of the compensating effects of secondary aerosol (sulfate)
production, hygroscopic growth and wet deposition [Chin et
al., 2002]. Possible bias of MODIS monthly means can be
attributed to AOD diurnal variations. While Kaufman et al.
[2000] found that measurements at MODIS overpass time
represent clear-sky daytime averages quite well, others
show detectable diurnal variability in urban/industrial areas
(10–40%) [Smirnov et al., 2002], and in the southern
African biomass burning region (25%) [Eck et al., 2003].
Scatterplots of AERONET monthly mean AOD against the
GOCART and MODIS data are shown in Figure 5. For
cases when AERONET AOD is less than 0.6, MODIS
retrievals have a positive bias, while GOCART simulations
do not show a significant bias. For high values of AERONET
AODs both data sets tend to underestimate such values. The
discrepancies revealed in the comparison could be attributed
to intrinsic uncertainties of each data set as well as to the
sampling incompatibility. Confident estimates of the defi-
ciencies in both data sources would be possible only when the
sampling effects are reliably estimated.
[17] To propagate the high quality information of the

AERONET, an empirical method is proposed here that
takes advantage of the spatial distribution information from
GOCART and MODIS. To test whether reliable geograph-
ical distribution information can be retrieved from model
and satellite data, intercomparison of the variability signals
of GOCART and MODIS data is first performed.

4. Comparison of MODIS and GOCART
Variability

[18] In order to compare the spatial and temporal variabil-
ity of MODIS and GOCART, anomalies (difference between

monthly means and total 24 months average) are calculated.
Coupled analysis is performed based on the singular value
decomposition (SVD) method, which is a powerful tool to
identify pairs of spatial patterns (modes) with the maximum
temporal covariance between the two fields [Bretherton et
al., 1992]. It has been widely applied to meteorological data
for exploring the coupled relationship between two physi-
cally related variables [Wallace et al., 1992; Wang and Ting,
2000]. If the two fields have large common signals and are
joined-analyzed using the SVD method, the spatial distribu-
tions of the modes and the temporal variation of the expan-
sion coefficients are expected to be similar. The contribution
of each pair of modes is described by the squared covariance
function (SCF), defined as:

SCFi ¼ s2i
.
PM
j¼1

s2
j

ð3Þ

where si is the ith singular value and M is the total number
of coupled pairs. In the coupled GOCART and MODIS
anomaly SVD analysis, more than 95% of squared
covariance is explained by the first three leading modes
(see Figure 6), suggesting that most of the variation signal is
contained in these modes. The temporal evolution of
MODIS and GOCART data is similar, namely, mode 1
and mode 2 represent a strong annual cycle, and mode 3
describes the seasonal variation. The amplitude of the
MODIS time series appears to be larger than that of
GOCART, due to the larger variance associated with the
satellite retrievals.
[19] The first three leading coupled modes are present in

Figure 7. Pairs of modes display similar spatial distribution;
large-scale prominent features such as biomass burning in
southern hemisphere, tropical Africa and southeast Asia;
dust over northern Africa, Asia and transport over the
tropical Atlantic Ocean are in good agreement.
[20] Missing MODIS data over part of northern Africa

and Saudi Arabia are filled based on GOCART spatial

Table 2b. Monthly Mean AOD of AERONET Sites Located Within the Same 2.5� � 2� Grid Cell (March 2001 to February 2002)a

March
2001

April
2001

May
2001

June
2001

July
2001

August
2001

September
2001

October
2001

November
2001

December
2001

January
2002

February
2002

GSFC 0.100 0.210 0.272 0.368 0.187 0.516 0.155 0.109 0.124 0.065 0.058 0.079
MD_Science_Center 0.109 0.231 0.269 0.388 0.204 0.506 0.151 0.119 0.133 0.073 0.058 0.085
Penn_State_Univ 0.319 0.406 0.106
Beijing 0.518 0.891 NAb NA NA NA NA NA NA NA NA NA
XianHe 0.524 0.747 NA NA NA NA NA NA NA NA NA NA
Rogers_Dry_Lake NA NA NA NA NA NA NA NA NA NA NA 0.040
UCLA NA NA NA NA NA NA NA NA NA NA NA 0.102
Avigon NA NA NA 0.169 0.187 NA NA NA NA NA NA NA
Marseille NA NA NA 0.165 0.207 NA NA NA NA NA NA NA
Realtor NA NA NA 0.156 0.198 NA NA NA NA NA NA NA
Vinon NA NA NA 0.154 0.166 NA NA NA NA NA NA NA
GISS NA NA NA NA 0.162 0.380 0.153 NA NA 0.111 0.105 0.080
Philadelphia NA NA NA NA 0.243 0.441 0.154 NA NA NA NA NA
CCNC NA NA NA NA NA NA NA NA NA 0.095 0.082 0.077
Aire_Adour NA NA NA NA NA NA 0.166 0.069 NA NA NA NA
Tarbes NA NA NA NA NA NA 0.167 0.098 NA NA NA NA
Big_Meadows NA NA NA NA NA NA 0.112 0.075 NA NA NA NA
SERC NA NA NA NA NA NA 0.178 0.105 NA NA NA NA
Osaka NA NA NA NA NA NA NA NA NA 0.131 0.021 0.022
Shirahama NA NA NA NA NA NA NA NA NA 0.093 0.013 0.018

aCells with AOD variation larger than 0.1 are shown in boldface.
bNA, temporal collocated measurements are not available.
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Figure 4. Comparison of monthly mean AOD from GOCART, MODIS, and AERONET for a 1-year
period (March 2000 to February 2001). The names of eliminated under-sampled AERONET sites are also
given.

Table 3. Regions Selected for the Monthly Mean AOD Comparison From MODIS, GOCART, and AERONET

Region
Index Domain

Major Aerosol
Types

Direction Shown
in Figure 3

A 150�W–40�W 30�N–60�N urban/industrial west to east
B 150�W–40�W 60�S–30�N biomass burning south to north
C 40�W–80�E 60�S–10�N biomass burning south to north
D 40�W–80�E 10�N–40�N dust south to north
E 40�W–80�E 40�N–60�N urban/industrial south to north
D 80�E–150�W 30�N–60�N dust urban/industrial west to east
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information. The filled desert area is less than 2% of the
total analysis domain, yet, nearly 9% of the total variance is
found in this region. The question arises whether this data
filling has a large effect on the anomaly analysis. Sensitivity
coupled SVD analysis performed with unfilled MODIS data
shows little difference. The reason could be attributed to the
large outflow areas over ocean and nearby dark land
surfaces, which maintain strong signals from the data void
regions.
[21] The SVD coupled analysis indicates that in spite of

the differences in temporal coverage (clear-sky snapshot
versus all-sky all-time) the variability information from
MODIS retrievals and GOCART model results is in good
agreement. The different sampling strategies do not seem to
have significant effect on the spatial and temporal variabil-
ity signals of the two data sets. These results are the basis
for utilizing the spatial variation information from both data
sets to distribute AERONET data at a global scale.

5. Empirical Combination

[22] Progress has been made to combine satellite retriev-
als with model products based on optimal interpolation (OI)
techniques. Collins et al. [2001] dynamically assimilate the
AVHRR retrievals to a chemical transport model; Yu et al.

[2003] merge the monthly mean MODIS retrievals with the
GOCART model results and analyze a complete annual
cycle for global AOD. In this study, we present an ‘‘empir-
ical’’ method (not solely dependent on the error analysis) to
combine the AERONET, MODIS and GOCART AOD
monthly mean data. The global long-term averages are
determined first, followed by spatial and temporal variations
constructed from truncated EOF fitting. A flowchart of the
empirical combination scheme is presented in Figure 8.

5.1. Two-Year Averaged Global AOD

[23] Minimum variance estimation method [Daley, 1991]
is usually used to average two data sets with weights
determined as:

w1 ¼
e22

e21 þ e22
w2 ¼

e21
e21 þ e22

ð4Þ

where w is the weight and e2 is the unbiased error variance
[North et al., 1991; Huffman et al., 1995; Xie and Arkin,
1996]. To estimate the respective averaging weights for
GOCARTandMODIS 2-year meanAOD, data from Figure 5
are binned at 0.02 AOD units based on AERONET
measurements. Assuming that inside each bin the mean value
contains the bias, then the standard deviation can be regarded
as the square root of unbiased error variance. The ‘‘error’’ is
not entirely due to the deficiencies of model simulation
schemes and satellite retrievals; sampling differences could
also exert an effect. The analysis result and the linear fittings
of the mean value and the standard deviations are shown in
Figure 9. Disperse distribution at the high value end is due to
data scarcity and might be statistically insignificant. On the
basis of this analysis, unbiased error variances are set to be
(0.057 + 0.158t)2 for GOCART results and (0.074 + 0.134t)2

for MODIS data. Consequently, fractional contribution
(weight) of GOCART data monotonously decreases from
0.63 to 0.48 as t increases from 0 to 1. To assign the fractional
contributions to both data sets, there is a need to determine the
value of t. Since the linear regression is performed in respect
to the ‘‘ground truth,’’ t should be the ‘‘true’’ value

Figure 5. Scatterplots of AERONET monthly mean AOD
against (top) GOCART model simulations and (bottom)
MODIS retrievals.

Figure 6. Temporal variations of expansion coefficients
(time series) of the three SVD leading modes of MODIS
retrievals and GOCART simulations.
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rather than estimates from model and satellite. In this
work we set t to be the arithmetic average of collocated
GOCART and MODIS data, since the fractional contribu-
tion of GOCART (or MODIS) is a slowly varying
function of t. A difference of 0.2 in t results in a change
of at most 0.037 in weights and therefore, inaccuracies in
t will not have a large impact on the contribution of each
data set.
[24] Since the weighted average is computed from data

that might be biased, a further check of the bias is necessary.
In Figure 10 presented is a comparison of the combined 2-year
average with data from thirteen AERONET stations (twelve
grid values because GSFC and MD_Science_Center are

located within one cell and averaged). The merged 2-year
means are generally larger than the AERONET observations
(difference is below 0.1). To possibly reduce the remaining
bias, Poisson technique is used: twelve grid points serve as
anchor points (internal boundaries) and the weighted aver-
aged data at the Polar Regions are kept as external boundary
values. We assume that these AERONET long-term averages
represent the area average and that a small bias remains in the
merged data at high latitude. Forcing terms at the remaining
points are calculated from the weighted averaged data. The
rationale of this procedure is that linear bias contained in the
original field could not affect the value of the second
derivative (forcing term r in Poisson equation). Using accu-

Figure 7. Three normalized leading modes of coupled SVD analysis of MODIS retrievals and
GOCART simulations. See color version of this figure at back of this issue.
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rate values at some anchor grid points and trying to keep the
original forcing terms at the remaining points, reconstruction
of the field can reduce constant and linear bias from the
original data. This technique is well established in the
assimilation of SST and precipitation [Reynolds, 1988;
Reynolds and Marsico, 1993; Reynolds and Smith, 1994;
Xie and Arkin, 1996].
[25] Figure 11 shows the 2-year mean AOD from

GOCART, MODIS (void-filled) and the final result within
(60�S, 60�N). Displayed is also the effect of the Poisson
technique. GOCART data (with spatially averaged AOD
being 0.13) are smaller than MODIS results (0.19), and
weighted averaged result lies in between (0.16). Poisson
technique has an overall reduction effect (Figure 11d) due to
general overestimation by the 2-year weighted average
compared with AERONET (Figure 10), which leads to the
final averaged value (0.13) to be close to GOCART simu-
lations. In the 2-year average AOD (Figure 11c), large
values are found in Africa and Asia, mostly from mineral
dust, combined with biomass burning and industrial pollu-
tion. Evident is also the westward propagation from north
Africa and eastward transport from east Asia. AODs over
South America are somewhat lower than over South Africa,
perhaps due to the shorter and less intense period of the
burning season [Duncan et al., 2003]. Urban/industrial
aerosol signals could be detected in the eastern United
States and Europe.

5.2. Spatial and Temporal Variations

[26] Propagating the AERONET information at global
scale is difficult largely due to the limited number of
stations and the inhomogeneous and anisotropic AOD

spatial distributions which might not be reliably described
by simple modeled covariance functions. Truncated EOF
fitting is more suitable for this case because of its ability to
distribute sparse data to large scale in a more realistic and
coherent manner. Such approach has been applied to the
reconstruction of historical SST and model data assimilation
[Smith et al., 1996; Kaplan et al., 1997; Joaquim et al.,
2001].
5.2.1. Methodology
[27] Denoting the leading EOF modes computed from

MODIS and GOCART anomalies as E, and AERONET
anomalies as O:

O ¼ HEmþ d ð5Þ

where m is the expansion coefficient; H is the observation
operator which converts the data from grid space to the
observation locations; and d is the difference between the

Figure 8. Flowchart of the empirical combination scheme
to construct global monthly mean clear-sky daytime average
AOD from GOCART simulations, MODIS retrievals, and
AERONET measurements.

Figure 9. Estimation of unbiased ‘‘error’’ variance of (top)
GOCART and (bottom) MODIS data. GOCART and
MODIS monthly mean AOD are binned with a 0.02 bin
size according to the AERONET data (X axis). Within each
bin, mean value (black square) and standard deviation
(vertical bar) are calculated. Linear fits of mean values and
standard deviations are performed separately. Solid lines
represent mean values fitting; dotted lines are the standard
deviation fitting superposed on the solid line. Fitted
standard deviation is (0.057 + 0.158t) for GOCART and
(0.074 + 0.134t) for MODIS.
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observation anomaly and the constructed value. Best
estimation of the expansion coefficient m in a least square
sense requires:

@ dTdð Þ
@m

¼ 0 ð6Þ

this equals to:

HEð ÞT HEð Þm ¼ HEð ÞTO ð7Þ

m Is derived by solving this linear system and the
constructed anomalies are calculated from HEm.
[28] We assume that the quality checked AERONET

monthly means of AOD could be regarded as the grid
average, so the observation operator H is simply mapping
the stations to the grid points where they are located.
AERONET anomalies O are calculated relative to the above
estimated 2-year average AOD values at the corresponding
grids. Leading modes E are derived from area-weighted
EOF analysis, performed on the composite MODIS and
GOCART anomalies (i.e., concatenate two data sets
together). Figure 12 shows the percentage of the total
variance explained by each mode. More than 70% con-

Figure 10. Scatterplot of AERONET 2-year mean AOD
(13 stations, 12 grid point values) against weighted average
of GOCART and MODIS 2-year mean AOD. Indices and
names of the stations are labeled on the plot.

Figure 11. Estimation of 2-year averaged AOD based on the weighted average of GOCART and
MODIS data and Poisson technique: (a) GOCART 2-year average, (b) MODIS 2-year average calculated
from the void-filled data set, (c) final results, and (d) effect of the Poisson technique; locations of
AERONET stations are plotted, index being same as Figure 10. See color version of this figure at back of
this issue.
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tribution comes from the first 5 modes, which indicates
that large common variability is shared by the two data
sets. In order to fit the leading EOFs to the measurements
month by month, relative significance of each mode must
also be determined on a monthly basis. The leading
sequence of the EOFs is determined by:

sigi;t ¼
ffiffiffiffi
si

p
Ti;t

�� ��
XM
i¼1

ffiffiffiffi
si

p
Ti;t

�� ��
ð8Þ

where the index i represents the ith mode, and t denotes the
time; T is the normalized expansion coefficients (temporal

amplitude) from the EOF analysis and s is the eigenvalue
(explained variance).
5.2.2. Sensitivity Tests
[29] Before implementing the EOFs fitting, following

questions remain: (1) How many modes are necessary to
achieve satisfactory result? (2) Is this method robust in
respect to the observational and sampling errors in the
AERONET data?
[30] To test how many EOFs are needed for capturing

significant signals and for testing the performance of
truncated EOF fitting, the following sensitivity test is
designed: AERONET anomalies are replaced with the
MODIS/GOCART anomalies at the grid points where
AERONET stations are located. The result of such simulated
EOF fitting will be compared with the original MODIS
and GOCART anomaly fields to check whether signifi-
cant signals can be reconstructed. To make a quantitative
estimate of the resemblance between two fields, the two-
dimensional data array is reformed to a vector, and the
vector cosine is computed as a similarity index. The
cosine value of 0.71 represents a projection angle of
45�, which is served as an acceptable lower bound for
two spatially similar fields. The robustness of the fitting,
which is determined by the condition number of the
matrix (HE)T(HE), is also calculated. Larger condition
number will make the linear system ill conditioned and
very sensitive to small change of observed values, thus
unfavorable for the fitting process.
[31] Test results for August 2000 are shown in Figure 13.

Condition number and the similarity (vector cosine) be-
tween the fitting results and the simulated field are dis-
played as a function of the number of EOFs being used. Test
results for the other months are similar. Generally, with few

Figure 12. Percentage of the total variance explained by
each mode calculated from the joint EOF analysis of the
composite MODIS and GOCART anomalies.

Figure 13. Condition number and the similarity (vector
cosine) between the fitted results and the simulated field
(MODIS and GOCART) as a function of the number of
EOFs being used (August 2000).

Table 4. Number and Index of the Leading Modes; Number of

Grid Points With Available AERONET Values Used in the EOF

Fitting for Each Month

Date

Leading EOFs
Used in the Fitting

Number of Grid Points
With AERONET
MeasurementsNumber Index

March 2000 7 1, 2, 3, 4, 5, 6, 17 61
April 2000 7 1, 2, 3, 4, 5, 6, 7, 8 60
May 2000 8 1, 2, 3, 4, 5, 6, 7, 8, 9 69
June 2000 6 1, 2, 3, 4, 5, 6, 72
July 2000 9 1, 2, 3, 4, 5, 6, 8, 11, 13 69
Aug. 2000 8 1, 2, 3, 4, 5, 6, 7, 13 74
Sept. 2000 5 1, 2, 3, 4, 5, 75
Oct. 2000 8 1, 2, 3, 4, 5, 7, 8, 10 69
Nov. 2000 10 1, 2, 3, 4, 5, 7, 8, 9, 10, 12 66
Dec. 2000 6 1, 2, 3, 4, 5, 6 59
Jan. 2001 6 1, 2, 3, 4, 5, 7 63
Feb. 2001 5 1, 2, 3, 4, 5, 69
March 2001 8 1, 2, 3, 4, 5, 6, 7, 8 72
April 2001 8 1, 2, 3, 4, 5, 7, 9, 15 69
May 2001 6 1, 2, 3, 4, 7, 8 79
June 2001 8 1, 2, 3, 4, 5, 6, 8, 10 83
July 2001 9 1, 2, 3, 4, 5, 6, 8, 9, 11 82
Aug. 2001 7 1, 2, 3, 4, 5, 8, 10 87
Sept. 2001 6 1, 2, 3, 4, 5, 6, 84
Oct. 2001 6 1, 2, 3, 4, 6, 7 78
Nov. 2001 6 1, 2, 3, 4, 5, 7 72
Dec. 2001 5 1, 2, 4, 5, 7 68
Jan. 2002 5 1, 2, 3, 4, 5 69
Feb. 2002 5 1, 2, 3, 4, 5 59
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EOFs participating in the fitting, large-scale spatial patterns
can be successfully reproduced, with the vector cosine
being larger than 0.8. As more modes are being included,
the similarity increases; however, the condition number also
becomes larger.
[32] The following empirical rules are followed to

decide how many leading EOFs to use: sufficient number
of modes is needed to capture significant spatial variabil-
ity information; modes with small and comparable eigen-
values are usually degenerated and might be contaminated
by errors [North et al., 1982]; the condition number
should be relatively small. As a compromise, a threshold
value of 0.02 of the relative significance value sigi,t is
used to truncate the EOF modes for each month. Table 4
gives the number and index of the leading modes being
used and the number of grid points with available
AERONET measurements.
5.2.3. Combination Results
[33] Truncated EOF fitting is performed to construct the

anomaly field for the time period March 2000 to February
2002 over the domain of (60�S, 60�N). Monthly mean AOD
are obtained by adding the anomaly back to the 2-year

average. The Poisson technique is used to fill in the high
latitude region as used in the MODIS data void filling.
Large-scale spatial and temporal variations are well repre-
sented in the combined results (Figure 14).
[34] Minimum least square fitting cannot reproduce the

exact AERONET AOD values. Unless the spatial variation
of the measurements is represented by the linear combina-
tion of the available patterns (leading EOFs) the results
might not be satisfactory. Scatterplot of the combination
results against AERONET data is presented in Figure 15
showing high correlation to the AERONET data. Dispersion
and a small negative bias of the merged AOD can be caused
by the different temporal coverage of GOCART and
MODIS data, subgrid-scale variability in the AERONET
observations, loss of small-scale signals due to the trunca-
tion of EOFs and inaccurate long-term average from which
AERONET anomalies are calculated.
[35] To assess differences between the combination

results and GOCART/MODIS data and to evaluate regional
performance, comparison is performed at six regions as
specified in Table 3 (Figure 3). Figure 16 displays the
intercomparison between the data sets and scatterplots of

Figure 14. Estimation of global monthly mean clear-sky daytime AOD from the empirical combination
of AERONET, GOCART, and MODIS data for March 2000 to February 2001. See color version of this
figure at back of this issue.
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each against AERONET measurements. Only grid points
with MODIS retrievals are selected.
[36] Region A: Merged AOD agrees well with GOCART

in spring and summer but is lower than both data sets in

autumn and winter. In general, combination result gives a
higher correlation with AERONET.
[37] Region B: Combination results display a negative

bias. MODIS data agree well with AERONET while
GOCART tends to have a low bias thus not improving
the combination results in this area.
[38] Region C: Combination results shows good agree-

ment with AERONET and regionally averaged combination
values are generally between GOCART and MODIS.
[39] Region D: Combination results agree better with

GOCART results in this region Underestimations exist for
some high AERONET AOD cases. This region has the
largest known aerosol burden.
[40] Region E: Both GOCART and MODIS tend to

overestimate the AOD in this region. Although the correla-
tion is not improved for the combination results, positive
bias is largely reduced.
[41] Region F: Combination results show a high degree of

agreement with GOCART data. MODIS data display a
positive bias in the small to medium range of AOD,
however, they agree better with AERONET at the high
end of values.
[42] Overall, merged results are closer to GOCART than

to MODIS. The explanation could be that in the range of

Figure 15. Scatterplot of AERONET monthly mean AOD
against the empirical combination results.

Figure 16. Regional comparison of the empirical combination results with GOCART and MODIS
data. Also shown are the scatterplots of three data set against AERONET measurements: (a) GOCART,
(b) MODIS, and (c) combination results. Domains are defined in Table 3 and are shown in Figure 3; grid
points without MODIS retrievals are not included.
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low and medium AOD, GOCART data do not show a
significant bias, while MODIS data have a positive bias
(Figures 5 and 9). Since monthly AODs over large part of
the world are within the low and medium range, the
combination results tend to be close to model simulations.
However, variations of the merged results are more consis-
tent with MODIS retrievals which would imply that the
GOCART model provides better estimates of the magni-
tude, while MODIS results are better for describing
variations.

6. Discussion and Summary

[43] When describing the Progressive Retrieval and As-
similation Global Observing Network (PARAGON) con-
cept, Diner et al. [2004] emphasize the need to reduce the
uncertainties in our understanding of aerosol-climate inter-
actions. Specifically: ‘‘The complexity of the aerosol-climate
problem implies that no single type of observation or model is
sufficient to characterize the current system or to provide the
means to predict aerosol impacts in the future with high
confidence’’. Consequently, information must be drawn from
multiple observational and theoretical techniques, platforms,
and vantage points, and strategies that explicitly plan for the
integration and interpretation of the various components. In
the present study an attempt has been made to reduce the
errors at global scale in AOD by developing a merging
approach to obtain global monthly mean clear-sky daytime
AODs, using observations from independent sources. The
methodology was implemented with a 2-year record of
simultaneous information from model outputs, satellite
retrievals and ground observations. This approach has the
following merits:
[44] 1. Leading EOFs can retrieve the significant and

geographically continuous variation signals from model and
satellite data.
[45] 2. Fitting the leading EOFs to the ground observa-

tions can propagate the AERONET information in an
inhomogeneous and anisotropic manner, with an amplitude
that is close to the measurements in a general least square
sense.
[46] 3. Truncated EOF fitting is robust and not very

sensitive to possible sampling errors in the ground obser-
vations. If the sampling errors lead to variations that cannot
be explained by the leading EOFs, these signals will be
largely ignored in the fitting process.
[47] Limitations regarding this scheme are:
[48] 1. It is empirical in nature where assumptions can be

only partially tested due to the limited amount of high
quality monthly mean, grid area averaged AOD data sets.
[49] 2. Propagation of AERONET information in the time

dimension was not implemented. Kaplan et al. [1997]
constructed a first-order linear Markov model to provide
further constrains on the temporal amplitudes. However, a
reliable model of this type can be built only when the
database of collocated information is expanded.
[50] 3. More realistic observation operator than H might

ameliorate the regional representativeness problem of
AERONET point measurements. However, finding the
relationship between the areal average and point value
remains an open issue. It is hoped that the full potential
of the proposed approach would be achieved when longer

term information from independent sources becomes avail-
able in the future.
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Figure 2. Monthly mean AOD at 550 nm for August 2000. (a) GOCART simulation results, (b) MODIS
level 3 1� � 1� monthly means, and (c) error-filtered, void-filled, remapped 2.5� � 2� MODIS data.
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Figure 7. Three normalized leading modes of coupled SVD analysis of MODIS retrievals and
GOCART simulations.
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Figure 11. Estimation of 2-year averaged AOD based on the weighted average of GOCART and
MODIS data and Poisson technique: (a) GOCART 2-year average, (b) MODIS 2-year average calculated
from the void-filled data set, (c) final results, and (d) effect of the Poisson technique; locations of
AERONET stations are plotted, index being same as Figure 10.
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Figure 14. Estimation of global monthly mean clear-sky daytime AOD from the empirical combination
of AERONET, GOCART, and MODIS data for March 2000 to February 2001.
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